

Super-Abstract: Software Art and a Redefinition of Abstraction
Brad Borevitz
June 5, 2004

http://www.onetwothree.net
brad at onetwothree.net

Brad Borevitz Super-Abstract: Software Art

1

Super-Abstract: Software Art and a Redefinition of Abstraction

By Brad Borevitz

The word abstract denotes, most literally, separateness, a meaning directly correlative to
its Latin root abstractus, drawn from, separated. Abstract art might be abstract in that it
contemplates an art object or an art practice as itself, separate from an instrumentality
that would situate art in the context of a representational imperative. In that sense,
abstract art is unencumbered by a relationship to a pre-existing exterior world. At the
same time, abstract art is abstract in that it becomes a meditation on the properties of art
or media considered separately from each other and potentially from histories, practices,
traditions or representations. This is at least the idealized and depoliticized notion of
abstraction that we receive from Greenberg's interpretation of modernist practice, which
has become definitive of the modern. While perhaps an apt interpretation of some
variants of abstract practice including constructivist, expressionist and minimalist
productions, it cannot necessarily account for the perspectival experiments of cubism or
Kandinsky's theoretical insistence on a language of abstract form.

In the domain of computation, abstraction is less controversial. The ever-increasing
degrees of generalization that are achieved through strategies like object-oriented
programming (OOP) organize the growing complexities of computational possibility, and
are built on the abstract principals of parameterization and data typing that define the
programmatic.

For art, however, abstraction has been at the center of a contentious and unending debate
about the definition of the modern that stretches over the last hundred years. In every era,
the tensions between abstract and representational strategies took on the political
entailments of the historical context, charging what might appear as the merely stylistic
affinities of artists with particular significance in regard to the character of the political
climate, the nature of perception, the role of art and the artist, and the limits of human
possibility.

In a postmodern era, where a junk heap of past styles seem emptied of particular
significance and always available for re-appropriation, the implications of pursuing a
strategy of abstraction are less clear. An inheritance of suspicions inevitably haunts a
modality with a history, so contemporary abstractionists labor under the specters of
derivativeness, exhaustion and irrelevance. To accept uncritically an essentially
modernist method, is to embrace a discredited faith in progress, humanism and capital.
Still, artists continue to produce abstract work and critics manage to assign contemporary
relevance to it.

The hard-edged geometries of Peter Halley's work, dubbed neo-geometric conceptualism,
for example, are read as metaphors for an atomized but networked social landscape. They
refer in their visual language to both the layout of the integrated circuit and the art
historical precedents of geometric abstraction from Mondrian to minimalism. The re-
imagining of the square as the carceral cell parodies the high-modernist valuation of
geometry as the apotheosis of formalist purity and sufficiency. The cell, within the

Brad Borevitz Super-Abstract: Software Art

2

contemporary imaginary, is a partial object which desires promiscuous connection within
a network exactly because it is incomplete in itself.

As the field of software art is gradually defined through
exhibitions and conferences, the identification of a
strain of work with a tendency towards abstraction is
undeniable and similarly requires an explanation that
makes sense of its relation to both art history and the
current moment. The 2003 Abstraction Now exhibition
hosted by Vienna's Künstlerhaus explicitly identified a
contemporary trend in abstraction that spans traditional
and digital media and is linked to constructivist and
minimalist precedents. As in other media, abstraction in
software art remains one tendency among many.
Judging from recent prize winners in both technically
oriented shows like the Transmediale or Ars
Electronica, and mainstream venues like the Whitney
Biennial, the trend is to valorize digital works which
focus on social, political and conceptual issues as

opposed to formal ones, and which use visual strategies other than abstraction. That said,
the exhibition spaces of the 2003 Ars Electronica, which took "Code" as its theme, was
full of computational abstractions, from the work of pioneering algorist Roman Verotsko
to that of MIT Media Lab alumni Casey Reas and Golin Levin. Half of the works
included in the Whitney's 2002 CODeDOC show were abstract, as were half of those in
the 2003 CODeDOC at Ars Electronica.

The persistence of an abstract software art practice, even as it may be shunted to the
periphery by the mechanisms of institutionalization, indicates that it is a trend deserving
of critical attention. The frequent closeness of the term "code" to instances of abstract
practice suggest a link. The computer, in its idleness, flourishes into the abstract: that
interstitial moment called the "screen saver." As software contemplates itself, it tends
towards the abstract. The deinstrumentalized machine conducts experiments exploring its
own limits and possibilities. The mechanisms of computation are repurposed to make
work rather than do it.

The CODeDOC show, focused on the relationship between software's code and
software's effects, is a promising place to look to begin developing techniques for reading
computational abstraction. Several pieces from the show are representative of the strain
of abstraction in software art that visually resembles modernist traditions of abstraction,
yet has a basis in the logic of its own particular modes of production. These pieces are
written in the OOP language Java, which introduces its own characteristic strategies of
abstraction: being based on the concept of an object, an abstract data structure operated
on by methods and organized in a hierarchy of classes and instances. The works address
the rather abstract commission of CODeDOC which states that, "The code should move
and connect three points in space. [This could obviously be interpreted in a visual or
more abstract way]."1 The relationship between the code and the work of digital art is
confused here since the instructions refer to what the code should do and then only

Peter Halley, Objective, 2000,
Acrylic, Day-Glo, pearlescent
and metallic acrylic and Roll-
a-Tex on canvas 73 x 78 in.

Brad Borevitz Super-Abstract: Software Art

3

parenthetically to its potential visual presentation. On the other hand, this split is one of
the basic assumptions of the show, as demonstrated in the language of the commission,
which also lays out CODeDOC's aesthetic concerns:

Digital Art is not a purely visual medium but always consist of a mostly invisible
back end–source code or scripting languages–and a front end, the results created
by "computer language." … … the aesthetics of artists who write their own source
code manifest themselves both in the code itself and its visual results. … …
"CODeDOC" takes a 'reverse' look at artists' projects by focusing on and
comparing the back end of the code.

Wattenberg's code for Connect the Dots is compact
and makes little use of OOP techniques, emphasizing
instead a procedural simplicity. The logic of the work is
easily read from the source. A loop iterates over a
stochastic algorithm 5000 times. The value of a
mathematical function at each random point in the
image is evaluated and compared to determine what
color it will be. The mathematical function relates the
given random point to the three others, which are
changed based on the user's mouse movements. The
behavior of the mathematical function is difficult for
the inexpert to predict. The changes will fade in
gradually and randomly, point-by-point each time the

mouse moves and changes the main parameters.

Looking at the running applet, a pattern emerges in random dots. A white triangle is
surrounded by alternating grey and black forms. Clicking on the screen causes a new
pattern to fade in with the same kind of random dot fill. Clicking and dragging
repeatedly, one begins to recognize the structures of the visual system that the piece
creates. There are clearly many variations but they all conform to a pattern: a central
triangle is inscribed by black and white curved bands which hug the triangle's borders;
grey and black contour lines radiate out from the central triangle. The fades between
patterns create complicated moiré effects where the new and old patterns overlap. Playing
with the mouse creates various textural effects and ghostly superimpositions. The user
has a sense of accomplishment in having figured out how the thing works. There is a
pleasure in the way one can predict the effects. But when the surprise of its variations are
exhausted, the user loses interest in play.

The path of a user's experience follows a narrative trajectory: from puzzlement, to
discovery, to understanding, and finally exhaustion. The pleasures of this passage involve
the sensual, empathetic experience of the algorithms of the software. The
phenomenological description of the applet is not that different in character from the
conjectures based on a reading of the code, but it is embodied and engaged. Moreover, it
is not dependent on a reading of the code. There is a way in which the basic

Martin Wattenberg, Connect
the Dots, 2002, Java

Brad Borevitz Super-Abstract: Software Art

4

programmatic logic of the work is as clearly evident in its visual presentation as it is in
the code itself.

Reading Wattenberg's source, for the programmer, and perhaps for the uninitiated as
well, there is a certain awe of the way that the code actually produces the visual display.
There is also an appreciation of its economy and elegance. Without being compelled by
CODeDOC, it is unlikely that one would take the time to carefully parse the code before
looking at the piece. Most people would be interested in the code afterwards–if at all–in
order to see how it achieves its effects, or as a confirmation of one's intuitions of the
program's logic. Instead, the user is invited to experience and explore the piece's logic by
entering the system as an index of its parameterizations. The outcome of a user's
manipulations are manifest over time and dot by dot in such a way that the user comes to
experience the time of the algorithm: iterative time, discrete time. Commands are
executed sequentially and their repetitions accumulate effects, which develop into its
outcome. The user is inserted into to that loop and experiences the piece in that time.

Snibbe's Tripolar is based on a simulation of a classic
problem in chaos theory where a metal pendulum is
released over a set of magnets. Its effects depend on the
meta-chaos of variables he has fixed in the code and a
mechanism for interpolating between pixels to show the
details of the chaotic system. His code makes use of the
OOP structure of java more extensively than
Wattenberg's. He develops a complete set of methods
and properties for the Tripolar class. Some handle the
mouse movements and some create the elements of the
simulation. Another function controls the simulation
itself.

The program takes as input an x/y pair and calculates
and plots for that point a trajectory over time. A function iterates over a "while" loop so
that calculations continue as long as the velocity parameter remains over a threshold and
the iterations do not exceed 10,000. Each subsequent point on the path is calculated as the
sum of the last point and a series of separately computed forces: gravity, magnetic
attraction, friction and inertia. The tendency of each force and its calculations are simple
to understand individually, but their complex interactions over time are unpredictable by
definition.

Again, parsing the code deepens the viewer's understanding of the software system, but it
is not a prerequisite to apprehending its logic in some fashion. Time, effort and attention
offer similar insights into the logic of the work (and external documentation might more
efficiently supplement understanding as it often does conveniently for art in other media).

Each click brings a rendering in tiny line segments of a Lissajou daisy or eccentric spiral
at the end of a curvaceous stalk. The terminus approaches the cursor in a few steps. The
dense portions of the line coalesce around one of three points. The stalk is often short
when one clicks near any of them. Sometimes the stalk wanders around these points of

Scott Snibbe, Tripolar, 2002,
Java

Brad Borevitz Super-Abstract: Software Art

5

attraction. If the user holds down the mouse or drags, the line animates and approaches
the cursor. The rest of the line dances between the three poles and the tight knots of its
end flutter about and tighten and loosen like springs. In some spots the sinusoidal curve is
sent careening and blinking among the poles. In other regions, the line's terminus bounces
gently, while the stalk gracefully bends this way and that. The system is exhilaratingly
wild in its variations, but it is also peculiarly constrained. Moves are matched and
answered by a gesture that is both surprising and fitting–unpredictable and yet
structurally and gesturally consistent with every other signature curve produced by the
applet.

As in Wattenberg's piece, Snibbe's Tripolar reveals its
logic to the user through the presentation of successive
instantiations of its system. The user is inserted into
that system through mouse play. In contrast to Connect
the Dots, in Tripolar the system has no visual memory
of itself–it leaves no traces of its history to merge or
compare with its present. Tripolar rather demands that
the user's memory index its history to discover its
systematicity. Other strategies of reception are also
possible. In Napier's 3 Dots, for example, the user is
presented not with a series of instantiations from which
they may infer the rules of the system, but rather a
continuous development of a single instance from

which the user can derive the logic of the system by thoughtful observation over time.
The basic mechanism of viewership, however, is not really different. The fascination of
these works lies in the sensual apprehension of their procedural logics.

The front-end/back-end model taken as paradigmatic of digital art by CODeDOC is what
makes the show's reversal, its focus on the code, make sense. Software Art is created in
the act of coding–by recording in a formal computer language the instructions for
executing some set of operations; but the execution is separate and deferred. It makes
sense to compare this with Sol LeWitt's oft quoted description of his conceptual practice:

"In conceptual art the idea or concept is the most important aspect of the work.
When an artist uses a conceptual form of art, it means that all of the planning and
decisions are made beforehand and the execution is a perfunctory affair. The idea
becomes a machine that makes the art."2

Each time software is run, it creates an instance of its doing. Each instance, though not
necessarily identical, is true to the instructions of its software. Its variations are not
incidental–as might be variations in the execution of LeWitt's instructions, as the result of
human factors: mistakes, differences in style or interpretation–but are implicitly encoded
by the software. Software produces contingent, emergent, and randomized effects
programmatically, in response to interactivity, or to the sensed or networked
environment. An instance of software's running might be likened to the execution of
conceptual instructions. In either case though, an experiential encounter with the art as

Mark Napier, 3 Dots, 2002,
Java

Brad Borevitz Super-Abstract: Software Art

6

product should occur. For software, the experience of the code's productivity is
essentially tied to the variability and the unpredictability of its product. Iterative
processes have the ability to produce startling behavior as is evidenced in the vagaries of
artificial life and fractal geometries. The running of code reveals not just the explicit
logic of the program, but the latent and emergent logics of iteration and interaction as
well.

Code extends beyond the intent of its author and is mediated in relation to the reception
of the user. Code when running is in a continual state of becoming, in that the values of
its parameters are changed as a result of its execution, creating a multitude of possible
outcomes. This is why the authors of "The Aesthetics of Generative Code" assert that,
"the aesthetic value of the code lies in its execution, not simply its written form."3 Code
has a writerly aspect which tempts us to see it as the art itself: "Code is intricately crafted,
and expressed in multitudinous and idiosyncratic ways."4 However, it is necessary to
experience the code execute to fully grasp its logic, its possibilities, and its effects.

Software is an abstraction that is experienced through its instantiations during runtime or
as a result of them. And software always exists as part of a system of dependent relations
organized as a continuum of layers of abstract objects that extend through to the user at
an interface and down to the binary code on the hardware. This stack may be imagined to
have a terminus at the front for the user; but, the stack is a stack of interfaces, and each
layer is transmitting and translating from and to contiguous layers. Given a programmer-
user at the console, it might just as easily feedback into itself as end.

What is at stake in emphasizing the position of the code in relation to the interface is
really human agency. Software problematizes authorial intent in a new way. Putting a
human agent back in front of the machine is to recuperate symbolically the control that an
author relinquishes to the code or to the machine. In reading the code for clues to the
author's intention, we repeat this exercise. But code is a message for the machine, not for
a human. Code animates the machine. Code is read by the machine operationally, and not
culturally. Kittler draws our attention to the way that the mass migration of knowledge
(as data) and control (as procedure) makes vulnerable a central tenant of modernity, the
understanding of rational thought as the determinant attribute of human subjectivity.5

Computation, which begins as a machinic reduction of human intelligence, continues to
trouble the relationship between human and machine by presenting the procreativity of its
logics. The modernist program in art delivered abstractions as the pinnacle of rational
achievement, but as the clean geometries of this era issue from the monitor, praise for the
rational diminishes. Yet, the empathy present in the situation of reception that helped
give the modern its human character, is also a part of what attains in the perception of
programmatic logic within computational abstractions.

For programming, abstraction means parameterization: making something a function of
something else. Parameterization is rooted within and dependent on a larger abstract
process, namely modeling, the process of producing a schematic description of a system,
real or imagined. The heritage of Norbert Wiener's cybernetics lends its characteristics to
the contemporary practice, so distinctions between human and machine become

Brad Borevitz Super-Abstract: Software Art

7

irrelevant. Cybernetics is an epistemological scheme that defines its world in terms of
abstract systems of control and communication. In programming practice, this type of
systems thinking finds it apotheosis in the OOP technique which has come to dominate
the field and is abstract in that its structure is governed by the practice of modeling.

Programming exists under a regime defined by multiple levels of abstraction: modeling,
object-orientation, and parameterization. However, it is not necessarily abstract in the
sense of being divorced from the consideration of particular entities. In most contexts,
programming is subservient to an instrumentalism that refers it to real world situations
and demands from its systems solutions to business, scientific or military problems. In
this way, programming may be considered representational; in the case of its use for
simulation, it is perhaps literally so. And yet, simulations such as Snibbe's may refer only
generally to real-world physics, since they borrow the formulations of Newtonian rule
merely to abstract them and play them according to the demands of an aesthetic
production rather than in the service of modeling an actual or potential physical
systemThis split is not a perfect reflection of the historical art world divide between
representational strategies and abstract ones; the line of distinction is drawn, rather,
between an instrumentalizing use of the technology and a deinstrumentalizing one. To set
software free to play, opens it to the possibilities of critique and art. Abstraction, though
certainly not the only path in this direction is a sure and direct one. Greenberg insists that
abstraction is not the negation of representation, rather, abstract painting comes to have
an immediacy, or what he terms an at-onceness: "Painting and sculpture can become
more completely nothing but what they do; like functional architecture and the machine,
they look what they do."6

For Greenberg, the embrace of abstraction is an outgrowth of a Kantian immanent
critique and a progress towards a kind of truth: "The essence of modernism lies," he
writes, "in the use of the characteristic methods of a discipline to criticize the discipline
itself–not in order to subvert it, but to entrench it more firmly in the area of its
competence... "7 It is not necessary to associate abstraction with a suspect truth claim
when there is value in the act of divorcing software from its habitual uses and examining
its character separate from the instrumental realm.

There is a risk, however, in aestheticising computation, which should be obvious given
the historical lessons that tie futurist enthusiasm for a machine aesthetic to fascist politics.
It is far too easy to slip from what appears to be a critical exploration of the aesthetic
possibilities of computation to the capitulation to, if not a celebration of, the mechanisms
of domination practiced by global capital: the massive and rapid transfer and
manipulation of data as capital and capital as data by digital means. In the end, the risk is
unavoidable since a reflection on software is crucial exactly to the degree it serves as a
tool for domination. Software must have its politics, its aesthetics, its poetics, and its
criticism.

If there is a chance that software will contribute significantly to a new politically relevant
aesthetics, it lies in the way software shows us a way out of order, in and through order. It
engages the tensions between possibility and constraint. Software gives us not objects,
but instances–occasions for experience. We see our own embeddedness in networks of

Brad Borevitz Super-Abstract: Software Art

8

abstraction, structuration and system making, and in seeing, find ways of inhabiting this
situation of constraint as if it were possibility. Software can create systems of production
that present us with the generation of endless variation within programmatic limitations.
When freed from its instrumentalist telos, it is possible for software to exist solely on its
own terms: it stages its own abstraction and serves nothing save it’s own play, display,
and critique, that of abstraction itself. If it is possible for software to exist solely on its
own terms then it may become Super-Abstract.

1 CODeDOC, http://www.whitney.org/artport/commissions/CODeDOC/CODeDOC.html
2 LeWitt, Sol, "Paragraphs on Conceptual Art," in Alberro, et al.,
eds., Conceptual Art: A Critical Anthology, Cambridge, MIT Press, 1999, pg. 12
3 Geoff Cox, Alex McLean, Adrian Ward, "The Aesthetics of Generative Code",
http://www.generative.net/papers/aesthetics/
4 Ibid.
5 Kittler, Friedrich, "On the Implementation of Knowledge-Toward a Theory of
Hardware," in Nettime, February 6, 1999,
http://www.nettime.org/nettime.w3archive/199902/msg00038.html
6 Greenberg, Clement, “Towards a Newer Laocoon,” The Collected Essays and Criticism,
Volume 1, Chicago and London, The University of Chicago Press, 1993, pg. 34
7 Greenberg, Clement, “Modernist Painting,” The Collected Essays and Criticism,
Volume 4, Chicago and London, The University of Chicago Press, 85-6.

